HR-PLA 3D870 1.75mm Blanco
search
  • HR-PLA 3D870 1.75mm Blanco
  • HR-PLA 3D870 1.75mm Blanco
  • HR-PLA 3D870 1.75mm Blanco
  • HR-PLA 3D870 1.75mm Blanco
  • HR-PLA 3D870 1.75mm Blanco
  • HR-PLA 3D870 1.75mm Blanco
  • HR-PLA 3D870 1.75mm Blanco
  • HR-PLA 3D870 1.75mm Blanco
  • HR-PLA 3D870 1.75mm Blanco
  • HR-PLA 3D870 1.75mm Blanco
  • HR-PLA 3D870 1.75mm Blanco
  • HR-PLA 3D870 1.75mm Blanco
  • HR-PLA 3D870 1.75mm Negro
  • HR-PLA 3D870 1.75mm Negro
  • HR-PLA 3D870 1.75mm Negro
  • HR-PLA 3D870 1.75mm Negro
  • HR-PLA 3D870 1.75mm Negro
  • HR-PLA 3D870 1.75mm Negro
  • HR-PLA 3D870 1.75mm Negro
  • HR-PLA 3D870 1.75mm Negro
  • HR-PLA 3D870 1.75mm Negro
  • HR-PLA 3D870 1.75mm Negro
  • HR-PLA 3D870 1.75mm Negro
  • HR-PLA 3D870 1.75mm Negro
  • HR-PLA 3D870 1.75mm Natural
  • HR-PLA 3D870 1.75mm Natural
You must be logged in to manage your wishlist.

HR-PLA 3D870

PLA-3D870-WHITE-175-1000
€ 24,95 € 24,95
Sin IVA
Diámetro
Formato
Color
Quantity

Available now 22 units available for shipping.
unit(s) available for shipping in 0 - 0 days
Available in 0 - 0 days

Product temporarily out of stock with these characteristics. Select another combination.

Product temporarily out of stock with these characteristics. Select another combination.

Notice of availability

Approximate delivery date: dinsdag 6 januari

El PLA 3D870 es un material que presenta unas características generales altas, comparables al ABS y en algún aspecto incluso superiores, pero manteniendo la facilidad para ser impreso que tiene un PLA convencional.

El PLA 3D870 está basado en el material desarrollado por NatureWorks Ingeo, uno de los PLA más potentes y más utilizados en el mundo para la impresión 3D. Este PLA resalta por encima de otros por tener una temperatura de reblandecimiento similar al ABS, por la alta resistencia al impacto y por el aumento de sus propiedades mecánicas al ser templado. El templado es un proceso que se realiza después de realizar la impresión 3D, en el cual se produce la transformación de la estructura molecular del PLA de amorfa a cristalina. En estado amorfo, el material tiene una estructura desordenada e irregular la cual puede provocar una serie de puntos débiles propensos a generar fallos y roturas. En cambio, en estado cristalino, el PLA 3D870 se recompone en una forma más ordenada, obteniendo así un material más estable y más liso a nivel microscópico. Esta forma molecular cristalina también ayuda al material a conseguir una resistencia al impacto muy elevada en comparación al resto de PLA y mucho mayor al del ABS, siendo así un material adecuado para ciertas piezas de aplicación industrial.

La técnica del templado no suele ser muy eficaz en muchos plásticos, en la mayoría provoca una disminución de las propiedades físicas, mecánicas o directamente se funde, pero al PLA 3D870 no le ocurre eso. Después del templado la temperatura de reblandecimiento, que es uno de los puntos débiles de los PLA por tener un valor bajo (≈55ºC),  aumenta hasta los 85ºC llegando a ser una temperatura muy próxima al del ABS. Otra propiedad que aumenta mucho su valor, es la resistencia al impacto, siendo el doble que en estado amorfo y 5 veces más resistente que el ABS. En las siguientes gráficas se compara al PLA 3D870 con el ABS y un PLA convencional tanto en estado amorfo como en estado cristalino.

Imagen 1: Resistencia al calor del HR-PLA 3D870

Imagen 2: Resistencia al impacto del HR-PLA 3D870

 

El templado necesario para fortalecer a este material se realiza de forma sencilla con cualquier horno doméstico, no es necesario ningún horno, aparato ni herramienta especial o profesional para hacer este post-procesado. Todos los pasos para ejecutar este proceso están explicados en el apartado de consejos de uso.

A mayores de todo lo mencionado anteriormente, el PLA 3D870 tiene otra ventaja en relación a su tonalidad, es resistente a la pérdida de color ante los rayos UV y a volverse amarillento con el paso del tiempo. Hasta la aparición de este material sólo el ASA mantenía su tonalidad ante los rayo UV.

No se puede taladrar, pintar o lijar como el ABS pero es un plástico más estable y más fácil de imprimir que este. Si se desean obtener acabados superficiales extraordinarios en el HR-PLA 3D870 (1,75mm o 2,85mm) se recomienda la utilización del recubrimiento específicamente diseñado para impresión 3D que podrás encontrar en la categoría de accesorios llamado XTC-3D. Para obtener mayores rendimientos de impresión 3D es aconsejable recubrir la cama de la impresora con Magigoo, Blue Tape, BuildTak, o con 3DLac que puedes encontrar en los accesorios de la tienda.

Como todos los plásticos PLA, el PLA 3D870  es un material biodegradable que se obtiene de recursos naturales, en concreto se obtiene a partir del almidón extraído del maíz, la remolacha y del trigo.

Como conclusión final, el PLA 3D870 es uno de los materiales más potentes para todo tipo de usuarios de impresoras 3D, tanto por sus características mecánicas como por la facilidad de impresión que presenta.

Material PLA
Formato 50 g / 1000 g
Densidad (D792) 1.22 g/cm³
Diámetro de filamento 1.75 / 2.85 mm
Tolerancia de filamento ± 0.10 mm
Longitud filamento (Ø 1.75 mm) ± 340 m / (Ø 2.85 mm) ± 128 m

Temperatura de impresión 205 - 225 ºC
Temperatura de base/cama 20 - 60 ºC
Temperatura de cámara
Ventilador de capa
Velocidad de impresión recomendada - mm/s

Resistencia al impacto Izod 2.23 KJ/m²
Alargamiento a la rotura - %
Resistencia a la tracción (ASTM D638) 40 MPa
Módulo de tracción (ASTM D638) 2865 MPa
Resistencia a la flexión (ASTM D790) 73 MPa
Módulo de flexión (ASTM D790) 2414 MPa
Dureza superficial -

Temperatura de fusión (D3418) 165 - 180 ºC
Temperatura de reblandecimiento 60 ºC

Transparencia

HS Code 3916.9
Diámetro bobina (exterior) 200 mm
Diámetro bobina (interior) 53 mm
Ancho bobina 70 mm

We highlight

Temperatura de impresión
205 - 225 ºC
Diámetro de filamento
1.75 / 2.85 mm
Densidad
1,22 g/cm³

Related products